On the performance of accelerated particle swarm optimization for charging plug-in hybrid electric vehicles

Rahman, I. and Vasant, P.M. and Singh, B.S.M. and Abdullah-Al-Wadud, M. (2016) On the performance of accelerated particle swarm optimization for charging plug-in hybrid electric vehicles. Alexandria Engineering Journal, 55 (1). pp. 419-426. ISSN 11100168

Full text not available from this repository.
Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

Transportation electrification has undergone major changes since the last decade. Success of smart grid with renewable energy integration solely depends upon the large-scale penetration of plug-in hybrid electric vehicles (PHEVs) for a sustainable and carbon-free transportation sector. One of the key performance indicators in hybrid electric vehicle is the State-of-Charge (SoC) which needs to be optimized for the betterment of charging infrastructure using stochastic computational methods. In this paper, a newly emerged Accelerated particle swarm optimization (APSO) technique was applied and compared with standard particle swarm optimization (PSO) considering charging time and battery capacity. Simulation results obtained for maximizing the highly nonlinear objective function indicate that APSO achieves some improvements in terms of best fitness and computation time. © 2015 Faculty of Engineering, Alexandria University.

Item Type: Article
Additional Information: cited By 71
Uncontrolled Keywords: Benchmarking; Charging time; Electric power transmission networks; Optimization; Particle accelerators; Particle swarm optimization (PSO); Smart power grids; Stochastic systems; Swarm intelligence; Vehicle performance, Accelerated particles; Key performance indicators; Nonlinear objective functions; PHEV; Plug-in hybrid electric vehicles; Renewable energy integrations; Smart grid; Transportation electrifications, Plug-in hybrid vehicles
Depositing User: Mr Ahmad Suhairi UTP
Date Deposited: 09 Nov 2023 16:18
Last Modified: 09 Nov 2023 16:18
URI: https://khub.utp.edu.my/scholars/id/eprint/7150

Actions (login required)

View Item
View Item