Mustafa, M.R. and Rezaur, R.B. and Rahardjo, H. and Isa, M.H. and Arif, A. (2015) Artificial neural network modeling for spatial and temporal variations of pore-water pressure responses to rainfall. Advances in Meteorology, 2015. ISSN 16879309
Full text not available from this repository.Abstract
Knowledge of spatial and temporal variations of soil pore-water pressure in a slope is vital in hydrogeological and hillslope related processes (i.e., slope failure, slope stability analysis, etc.). Measurements of soil pore-water pressure data are challenging, expensive, time consuming, and difficult task. This paper evaluates the applicability of artificial neural network (ANN) technique for modeling soil pore-water pressure variations at multiple soil depths from the knowledge of rainfall patterns. A multilayer perceptron neural network model was constructed using Levenberg-Marquardt training algorithm for prediction of soil pore-water pressure variations. Time series records of rainfall and pore-water pressures at soil depth of 0.5 m were used to develop the ANN model. To investigate applicability of the model for prediction of spatial and temporal variations of pore-water pressure, the model was tested for the time series data of pore-water pressure at multiple soil depths (i.e., 0.5 m, 1.1 m, 1.7 m, 2.3 m, and 2.9 m). The performance of the ANN model was evaluated by root mean square error, mean absolute error, coefficient of correlation, and coefficient of efficiency. The results revealed that the ANN performed satisfactorily implying that the model can be used to examine the spatial and temporal behavior of time series of pore-water pressures with respect to multiple soil depths from knowledge of rainfall patterns and pore-water pressure with some antecedent conditions. © 2015 M. R. Mustafa et al.
Item Type: | Article |
---|---|
Additional Information: | cited By 11 |
Depositing User: | Mr Ahmad Suhairi UTP |
Date Deposited: | 09 Nov 2023 16:18 |
Last Modified: | 09 Nov 2023 16:18 |
URI: | https://khub.utp.edu.my/scholars/id/eprint/6335 |