An optimized feature selection method for breast cancer diagnosis in digital mammogram using multiresolution representation

Eltoukhy, M.M. and Faye, I. (2014) An optimized feature selection method for breast cancer diagnosis in digital mammogram using multiresolution representation. Applied Mathematics and Information Sciences, 8 (6). pp. 2921-2928. ISSN 19350090

Full text not available from this repository.
Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

This paper introduces a method for feature extraction from multiresolution representations (wavelet,curvelet) for classification of digital mammograms. The proposed method selects the features according to its capability to distinguish between different classes. The method starts with both performing wavelet and curvelet transform over mammogram images. The resulting coefficients of each image are used to construct a matrix. Each row in the matrix corresponds to an image.The most significant features, in terms of capabilities of differentiating classes,are selected. The method uses threshold values to select the columns that will maximize the difference between the different classes'representatives. The proposed method is applied to the mammographic image analysis society (MIAS) dataset. The results calculated using 2�5-folds cross validation show that the proposed method is able to find an appropriate feature set that lead to significant improvement in classification accuracy.The obtained results were satisfactory and the performances of both wavelet and curvelet are presented and compared. © 2014 NSP Natural Sciences Publishing Cor.

Item Type: Article
Additional Information: cited By 25
Depositing User: Mr Ahmad Suhairi UTP
Date Deposited: 09 Nov 2023 16:16
Last Modified: 09 Nov 2023 16:16
URI: https://khub.utp.edu.my/scholars/id/eprint/5124

Actions (login required)

View Item
View Item