Prihatin, T. and Mahadzir, S. and Abdul Mutalib, M.I. (2012) Modeling and optimization of water-based polygeneration system. Computer Aided Chemical Engineering, 31. pp. 1427-1431. ISSN 15707946
Full text not available from this repository.Abstract
The impact of climate change, particularly drought, places an enormous pressure on the synthesis of process systems that use freshwater resources efficiently. This paper presents the synthesis of water-based polygeneration system to minimize freshwater consumption. A comprehensive model is formulated through a superstructure, featuring the possible configurations of simultaneous heat and power generations, re-circulating cooling water system, wastewater treatment options, as well as reaction and separation technologies for chemical production. Process units are modeled using Aspen Hysys 2006. A case study on the synthesis of optimum water polygeneration system is developed for an ethylene glycol production. The superstructure model is a mixed integer non-linear programming problem (MINLP) consisting of 305 equations, 326 variables and 20 binary variables. The objective of the model is to minimize freshwater make-up subject to 85 constraints. The model is subsequently solved using DICOPT++ in GAMS 20.7 with the optimum solution showing nearly 50 savings of freshwater consumption. © 2012 Elsevier B.V.
Item Type: | Article |
---|---|
Additional Information: | cited By 2 |
Depositing User: | Mr Ahmad Suhairi UTP |
Date Deposited: | 09 Nov 2023 15:51 |
Last Modified: | 09 Nov 2023 15:51 |
URI: | https://khub.utp.edu.my/scholars/id/eprint/3172 |