Optimizing transmission line parameter estimation with hybrid evolutionary techniques

Shaikh, M.S. and Raj, S. and Abdul Latif, S. and Mbasso, W.F. and Kamel, S. (2024) Optimizing transmission line parameter estimation with hybrid evolutionary techniques. IET Generation, Transmission and Distribution, 18 (9). pp. 1795-1814. ISSN 17518687

Full text not available from this repository.
Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

Power flow, planning, economics, dispatch, and stability analysis rely on accurate transmission line parameters (TLPE). Standard optimization methods are employed to develop such analyses and obtain TLPE. Additionally, these methods have limitations, including precision, accuracy, and time complexity. It is challenging to find improved solutions using standard optimization methods due to slow convergence and limitations in identifying local optima. Concerned with these challenges, the study suggest a new application for an effective hybrid optimization method capable of addressing such limitations. The hybrid algorithm, named the Salp Swarm Algorithm with Sine Cosine Algorithm (HSSASCA), that aims to tackle the issues of slow convergence and local optima. The Sine Cosine Algorithm (SCA) is employed after the Salp Swarm Algorithm (SSA), and Salp integration is utilized to successfully explore and analyze the search space. To enhance the performance of HSSASCA, the hybrid technique aims to provide expanded exploration capabilities, effective exploitation of the search space, and a better convergence rate. These key features position the HSSASCA algorithm as an effective solution to complex optimization problems. To assess the efficiency of the HSSASCA algorithm, six different test systems are employed. Initially, the evaluation of exploration, exploitation, and minimized local optima is conducted using the CEC 2019 benchmark functions. Secondly, efficiency monitoring and verification of HSSASCA across different scenarios occur by comparing it with established optimization algorithms such as SSA, SCA, firefly optimization algorithm (FFO), Grey Wolf Optimization (GWO), student psychology-based optimization (SPBO), and Symbiotic Organisms Search (SOS). Finally, statistical analysis is performed, revealing that the HSSASCA outperforms SSA, SCA, FFO, GWO, SPBO, and SOS. In terms of statistical results and convergence curves, the HSSASCA demonstrates superior performance in searching efficiency, convergence accuracy, and local optimum avoidance ability. © 2024 The Authors. IET Generation, Transmission & Distribution published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

Item Type: Article
Additional Information: cited By 0
Uncontrolled Keywords: Efficiency; Electric lines; Electric load dispatching; Electric load flow; Electric power transmission; Evolutionary algorithms; Transmissions, Conductor (electric); Hybrid algorithms; Local optima; Optimisations; Optimization algorithms; Salp swarms; Sine-cosine algorithm; Swarm algorithms; Transmission lines parameters; Transmission-line theory, Optimization
Depositing User: Mr Ahmad Suhairi UTP
Date Deposited: 04 Jun 2024 14:19
Last Modified: 04 Jun 2024 14:19
URI: https://khub.utp.edu.my/scholars/id/eprint/19690

Actions (login required)

View Item
View Item