The Impact of Cavities in Different Thermal Applications of Nanofluids: A Review

Zafar, M. and Sakidin, H. and Sheremet, M. and Dzulkarnain, I. and Nazar, R.M. and Hussain, A. and Said, Z. and Afzal, F. and Al-Yaari, A. and Khan, M.S. and Khan, J.A. (2023) The Impact of Cavities in Different Thermal Applications of Nanofluids: A Review. Nanomaterials, 13 (6).

Full text not available from this repository.
Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

Nanofluids and nanotechnology are very important in enhancing heat transfer due to the thermal conductivity of their nanoparticles, which play a vital role in heat transfer applications. Researchers have used cavities filled with nanofluids for two decades to increase the heat-transfer rate. This review also highlights a variety of theoretical and experimentally measured cavities by exploring the following parameters: the significance of cavities in nanofluids, the effects of nanoparticle concentration and nanoparticle material, the influence of the inclination angle of cavities, heater and cooler effects, and magnetic field effects in cavities. The different shapes of the cavities have several advantages in multiple applications, e.g., L-shaped cavities used in the cooling systems of nuclear and chemical reactors and electronic components. Open cavities such as ellipsoidal, triangular, trapezoidal, and hexagonal are applied in electronic equipment cooling, building heating and cooling, and automotive applications. Appropriate cavity design conserves energy and produces attractive heat-transfer rates. Circular microchannel heat exchangers perform best. Despite the high performance of circular cavities in micro heat exchangers, square cavities have more applications. The use of nanofluids has been found to improve thermal performance in all the cavities studied. According to the experimental data, nanofluid use has been proven to be a dependable solution for enhancing thermal efficiency. To improve performance, it is suggested that research focus on different shapes of nanoparticles less than 10 nm with the same design of the cavities in microchannel heat exchangers and solar collectors. © 2023 by the authors.

Item Type: Article
Additional Information: cited By 12
Depositing User: Mr Ahmad Suhairi UTP
Date Deposited: 04 Jun 2024 14:11
Last Modified: 04 Jun 2024 14:11
URI: https://khub.utp.edu.my/scholars/id/eprint/18737

Actions (login required)

View Item
View Item