Sin, J.-C. and Lam, S.-M. and Zeng, H. and Lin, H. and Li, H. and Huang, L. and Liaw, S.-J. and Mohamed, A.R. and Lim, J.-W. (2023) Construction of visible light-driven Eu-doped BiOBr hierarchical microflowers for ameliorated photocatalytic 2,4-dichlorophenol and pathogens decomposition with synchronized hexavalent chromium reduction. Materials Today Sustainability, 22.
Full text not available from this repository.Abstract
The presence of diverse environmental contaminants has posed unprecedented challenges to wastewater treatment. Herein, Eu-doped BiOBr hierarchical microflowers (Eu-BiOBr) were fabricated via a surfactant-free hydrothermal route as highly efficient photocatalysts for multipurpose wastewater remediation applications. Under visible light irradiation, the Eu-BiOBr products demonstrated meritorious photoactivity when exposed to the mixture solution of 2,4-dichlorophenol (2,4-DCP) and Cr(VI). Noticeably, 97.6 of 2,4-DCP was degraded after 80 min, and a complete Cr(VI) reduction was obtained within 60 min over the optimized 2 at Eu-BiOBr. This was ascribed to Eu-doping efficiently accelerated charge separation and migration, thus proliferating more reactive species and enhancing photocatalytic performance. Moreover, the 2 at Eu-BiOBr possessed good photoactivity after four successive runs, which confirmed its recyclability. Further, as an evaluation of electrical energy consumption, the 2 at Eu-BiOBr was found to be more economical in decomposing both 2,4-DCP and Cr(VI). The reactive species scavenging tests validated that the hydroxyl radical played a major role for the photodegradation of 2,4-DCP whereas photogenerated electron served as predominant reactive species for Cr(VI) to be reduced to Cr(III). Additionally, the 2 at Eu-BiOBr demonstrated much enhanced bactericidal activities against Escherichia coli and Bacillus cereus compared to pristine BiOBr. These results revealed that the Eu-BiOBr can be employed as visible light-driven photocatalytic and antibacterial candidates for practical applications in environmental cleanup. © 2023 Elsevier Ltd
Item Type: | Article |
---|---|
Additional Information: | cited By 17 |
Uncontrolled Keywords: | Bacillus cereus; Bacteriology; Bromine compounds; Chromium compounds; Decomposition; Energy utilization; Escherichia coli; Europium; Photocatalytic activity; Wastewater treatment, reductions; 2,4-dichlorophenol degradation; Antimicrobial; Cr(VI) reduction; Dichlorophenols; Microflowers; Photo-activities; Photo-catalytic; Reactive species; Visible-light-driven, Bismuth compounds |
Depositing User: | Mr Ahmad Suhairi UTP |
Date Deposited: | 04 Jun 2024 14:10 |
Last Modified: | 04 Jun 2024 14:10 |
URI: | https://khub.utp.edu.my/scholars/id/eprint/18531 |