Carbon nanotube field effect transistors: an overview of device structure, modeling, fabrication and applications

Zahoor, F. and Hanif, M. and Isyaku Bature, U. and Bodapati, S. and Chattopadhyay, A. and Azmadi Hussin, F. and Abbas, H. and Merchant, F. and Bashir, F. (2023) Carbon nanotube field effect transistors: an overview of device structure, modeling, fabrication and applications. Physica Scripta, 98 (8).

Full text not available from this repository.
Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

The research interest in the field of carbon nanotube field effect transistors (CNTFETs) in the post Moore era has witnessed a rapid growth primarily due to the fact that the conventional silicon based complementary metal oxide semiconductor (CMOS) devices are approaching its fundamental scaling limits. This has led to significant interest among the researchers to examine novel device technologies utilizing different materials to sustain the scaling limits of the modern day integrated circuits. Among various material alternatives, carbon nanotubes (CNTs) have been extensively investigated owing to their desirable properties such as minimal short channel effects, high mobility, and high normalized drive currents. CNTs form the most important component of CNTFETs, which are being viewed as the most feasible alternatives for the replacement of silicon transistors. In this manuscript, detailed description of the recent advances of state of the art in the field of CNTFETs with emphasis on the most broadly impactful applications for which they are being employed is presented. The future prospects of CNTFETs while considering aggressively scaled transistor technologies are also briefly discussed. © 2023 IOP Publishing Ltd.

Item Type: Article
Additional Information: cited By 3
Uncontrolled Keywords: Carbon nanotube field effect transistors; CMOS integrated circuits; MOS devices; Oxide semiconductors; Silicon compounds, Device application; Device modelling; Emerging technologies; Nanoscale electronics; Rapid growth; Research interests; Scaling limits; Silicon-based; Structure models; Transistor scaling, Carbon nanotubes
Depositing User: Mr Ahmad Suhairi UTP
Date Deposited: 04 Jun 2024 14:10
Last Modified: 04 Jun 2024 14:10
URI: https://khub.utp.edu.my/scholars/id/eprint/18365

Actions (login required)

View Item
View Item