Innovative Methodologies for Higher Global MPP of Photovoltaic Arrays under PSCs: Experimental Validation

Aljafari, B. and Pachauri, R.K. and Thanikanti, S.B. and Ayodele, B.V. (2023) Innovative Methodologies for Higher Global MPP of Photovoltaic Arrays under PSCs: Experimental Validation. Sustainability (Switzerland), 15 (15).

Full text not available from this repository.
Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

Partial shading conditions (PSCs) are responsible for the root causes of photovoltaic (PV) system performance deprivation such as hotspots (damaged PV cells), mismatch power losses and multiple power maxima. Recently, PV array reconfiguration strategies have proven to be beneficial in improving PV system performance and achieving improved shade dispersion properties. This research analyzes the improved Su-Do-Ku (I-SDK) PV array configuration in order to counteract the shading effect. This approach implements a 6 � 6 size PV array configuration and performance evaluation under different realistic shading scenarios. The performance of the I-SDK configuration is assessed and compared to that of the total-cross-tied (TCT) and Su-Do-Ku (SDK) arrangements. The performance indices such as power loss (PL), power at global maximum power point (GMPP), fill-factor (FF), performance ratio (PR), power enhancement (PE) and execution ratio (ER) are analyzed to show comprehensive comparison. An experimental analysis confirms the MATLAB/Simulink findings, demonstrating that the I-SDK configuration outperforms both the TCT and SDK array setups. The GMPP values of 143.5 W, 141.7 W, 138.1 W and 129.3 W also show the superiority of I-SDK during four shading instances compared to conventional SP, TCT, SDK and SM arrangements. Moreover, under similar PSCs, higher FF (74.61, 76.10, 77.1, 75.92) and lower PL (36.7 W, 38.5 W, 42.1 W, 50.9 W) support the adoptability of I-SDK for experimental validation/commercial viability. © 2023 by the authors.

Item Type: Article
Additional Information: cited By 0
Uncontrolled Keywords: array; dispersion; experimental study; methodology; photovoltaic system; scenario analysis
Depositing User: Mr Ahmad Suhairi UTP
Date Deposited: 04 Jun 2024 14:10
Last Modified: 04 Jun 2024 14:10
URI: https://khub.utp.edu.my/scholars/id/eprint/18350

Actions (login required)

View Item
View Item