Ahmed, A.A. and Saaid, I.M. and Sambo, C. and Mohd Shafian, S.R. and Hamza, M.F. (2023) Experimental investigation and numerical simulation of relative permeability modifiers during water shut-off. Geoenergy Science and Engineering, 230. ISSN 29498910
Full text not available from this repository.Abstract
Relative permeability modifier (RPMs) is a water-shutoff technique that is implemented mostly in high water-producing wells when conventional mechanical isolation methods are not suitable. To optimize RPM injection treatment, numerical simulation is the most effective tool. In this study, laboratory experiments were conducted to investigate the rheology and characteristics properties of newly formulated polymer grafted bentonite (GB). Baseline GB dispersion rheological model was developed using the concept of the effective volume fraction of particles, which depends on hydrodynamic forces. The model considers the effects of the three most significant factors, namely concentration, shear rate, and temperature. GB was then tested in a coreflood to ensure effectiveness and applicability in real reservoir conditions. Coreflood results were matched using a numerical simulator and the rheology model was incorporated to reduce uncertainty and determine critical GB-related simulation parameters. Subsequently, a pilot-scale simulation, which uses the history-matched coreflood parameters, was built to predict and optimize 5-spot pattern performance. A sensitivity analysis was performed for the effect of GB volume injected, layer thickness, and permeability contrast. The results show that the viscosity equation resulting from the modeling allows appropriate correlation of the experimental data of shear stress versus shear rate with change in concentration and temperature. The simulation results reveal that the injection of GB has improved pilot-scale performance in both water-cut reduction and oil recovery. Sensitivity results indicate that the effective period of GB treatment is longer when treated in low water cut than in high water cut. However, more GB injection results in better water control. © 2023
Item Type: | Article |
---|---|
Additional Information: | cited By 0 |
Uncontrolled Keywords: | Bentonite; Elasticity; Grafting (chemical); Mechanical permeability; Numerical models; Shear deformation; Shear flow; Shear stress; Water treatment, Coreflood; Experimental investigations; Grafted bentonite; Performance; Pilot scale; Relative permeability modifiers; Shear-rate; Simulation-modelling; Water cuts; Water shut-offs, Sensitivity analysis, bentonite; computer simulation; experimental study; numerical model; permeability; rheology; shear stress; viscosity |
Depositing User: | Mr Ahmad Suhairi UTP |
Date Deposited: | 04 Jun 2024 14:10 |
Last Modified: | 04 Jun 2024 14:10 |
URI: | https://khub.utp.edu.my/scholars/id/eprint/18106 |