Fabrication of Polyvinylidene Difluoride Membrane with Enhanced Pore and Filtration Properties by Using Tannic Acid as an Additive

Mulyati, S. and Aprilia, S. and Muchtar, S. and Syamsuddin, Y. and Rosnelly, C.M. and Bilad, M.R. and Samsuri, S. and Ismail, N.M. (2022) Fabrication of Polyvinylidene Difluoride Membrane with Enhanced Pore and Filtration Properties by Using Tannic Acid as an Additive. Polymers, 14 (1). ISSN 20734360

Full text not available from this repository.
Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

Potential use of tannic acid (TA) as an additive for fabrication of polyvinylidene difluoride (PVDF) membrane was investigated. The TA was introduced by blending into the dope solution with varying concentrations of 0, 1, 1.5, and 2 wt. The prepared membranes were characterized and evaluated for filtration of humic acid (HA) solution. The stability of the membrane under harsh treatment was also evaluated by one-week exposure to acid and alkali conditions. The results show that TA loadings enhanced the resulting membrane properties. It increased the bulk porosity, water uptake, and hydrophilicity, which translated into improved clean water flux from 15.4 L/m2.h for the pristine PVDF membrane up to 3.3� for the TA-modified membranes with the 2 wt TA loading. The flux recovery ratio (FRR) of the TA-modified membranes (FRRs = 78�83) was higher than the pristine one (FRR = 58.54), with suitable chemical stability too. The improved antifouling property for the TA-modified membranes was attributed to their enhanced hydrophilicity thanks to improved morphology and residual TA in the membrane matric. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.

Item Type: Article
Additional Information: cited By 2
Uncontrolled Keywords: Additives; Blending; Chemical stability; Fabrication; Flavonoids; Hydrophilicity; Membranes; Microfiltration; Water filtration, Acid loading; Anti-foulings; Dope solution; Flux-recovery; Humic acid; Modified membranes; Polyvinylidene difluoride; Property; Recovery ratio; Tannic acid, Tannins
Depositing User: Mr Ahmad Suhairi UTP
Date Deposited: 19 Dec 2023 03:24
Last Modified: 19 Dec 2023 03:24
URI: https://khub.utp.edu.my/scholars/id/eprint/17792

Actions (login required)

View Item
View Item