Ismail, I.S. and Rashidi, N.A. and Yusup, S. (2022) Production and characterization of bamboo-based activated carbon through single-step H3PO4 activation for CO2 capture. Environmental Science and Pollution Research, 29 (9). pp. 12434-12440. ISSN 09441344
Full text not available from this repository.Abstract
Bamboo is the fastest-growing plant and is abundant in Malaysia. It is employed as a starting material for activated carbon production and evaluated for its potential in CO2 capture. A single-stage phosphoric acid (H3PO4) activation is adopted by varying the concentrations of H3PO4 between 50 and 70 wt. at a constant temperature and holding time of 500°C and 120 min, respectively. The bamboo-based activated carbons are characterized in terms of product yield, surface area, and porosity, as well as surface chemistry properties. Referring to the experimental findings, the prepared activated carbons have BET surface area of >1000 m2 g-1, which implies the effectiveness of the single-stage H3PO4 activation. Furthermore, the prepared activated carbon via 50 wt. H3PO4 activation shows the highest BET surface area and carbon dioxide (CO2) adsorption capacity of 1.45 mmol g-1 at 25°C/1 bar and 9.0 mmol g-1 at 25°C/30 bar. With respect to both the characterization analysis and CO2 adsorption performance, it is concluded that bamboo waste conversion to activated carbon through H3PO4 activation method is indeed promising. © 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Item Type: | Article |
---|---|
Additional Information: | cited By 35 |
Uncontrolled Keywords: | activated carbon; adsorption; bamboo; biomass; carbon dioxide; cellulose; chemical alteration; surface area; waste management, Malaysia, carbon dioxide; charcoal, adsorption; porosity; temperature, Adsorption; Carbon Dioxide; Charcoal; Porosity; Temperature |
Depositing User: | Mr Ahmad Suhairi UTP |
Date Deposited: | 19 Dec 2023 03:23 |
Last Modified: | 19 Dec 2023 03:23 |
URI: | https://khub.utp.edu.my/scholars/id/eprint/17160 |