Recent advancements in latent heat phase change materials and their applications for thermal energy storage and buildings: A state of the art review

Hassan, F. and Jamil, F. and Hussain, A. and Ali, H.M. and Janjua, M.M. and Khushnood, S. and Farhan, M. and Altaf, K. and Said, Z. and Li, C. (2022) Recent advancements in latent heat phase change materials and their applications for thermal energy storage and buildings: A state of the art review. Sustainable Energy Technologies and Assessments, 49. ISSN 22131388

Full text not available from this repository.
Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

Phase change materials (PCMs) have received substantial interest for their ability to store and release latent heat for energy conservation and thermal control purposes. PCMs are available in a variety of latent heat and melting points but their performance is low due to low value of thermal conductivity which limits its usage. The addition of highly thermal conductivity nanoparticles, porous metal foams and encapsulation methods have been used to address this issue and try to fix the low thermal conductivity of PCMs which is broadly discussed in this manuscript. The ability of PCM to store and release the thermal energy prompted the researchers to use it in potential applications. The energy retained and emitted by PCMs may be used for a variety of purposes, such as in photovoltaic (PV) panels, thermoelectric generators, building air-conditioning, air and water heating systems, heat exchangers, desalination solar stills, textiles, thermal management of electronic equipment and batteries and food packaging. Therefore, in this review, first the advancements in thermal properties of PCMs are thoroughly discussed in terms of enhancement in melting and solidification rates. After that, the use of PCMs in various applications is then explored, and conclusions are drawn accordingly. Based on analysis of recent literature, it was discovered that the phase transition temperature, phase transition enthalpy and thermal conductivity are three important parameters for the selection of an appropriate PCM for use in various applications. The current status of these advanced energy storage materials is also presented in this review. Lastly, some challenges and future recommendation are also proposed for future researchers which will bring a revolution in thermal management field. © 2021 Elsevier Ltd

Item Type: Article
Additional Information: cited By 134
Uncontrolled Keywords: Desalination; Latent heat; Melting; Metal nanoparticles; Metals; Phase change materials; Solar power generation; Storage (materials); Temperature control; Thermal conductivity; Thermal energy; Thermoelectric equipment, Advanced phase change material; Control purpose; Energy conservation control; Material application; Phase change material; Phase change material application; State-of-the art reviews; Thermal; Thermal control; Thermal energy storage, Heat storage, building; encapsulation; energy storage; latent heat flux; literature review; nanoparticle; phase transition; thermal conductivity; thermodynamic property
Depositing User: Mr Ahmad Suhairi UTP
Date Deposited: 19 Dec 2023 03:23
Last Modified: 19 Dec 2023 03:23
URI: https://khub.utp.edu.my/scholars/id/eprint/17153

Actions (login required)

View Item
View Item