Response Surface Methodology and Artificial Neural Network Modelling of Membrane Rotating Biological Contactors for Wastewater Treatment

Irfan, M. and Waqas, S. and Arshad, U. and Khan, J.A. and Legutko, S. and Kruszelnicka, I. and Ginter-Kramarczyk, D. and Rahman, S. and Skrzypczak, A. (2022) Response Surface Methodology and Artificial Neural Network Modelling of Membrane Rotating Biological Contactors for Wastewater Treatment. Materials, 15 (5). ISSN 19961944

Full text not available from this repository.
Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

Membrane fouling is a major hindrance to widespread wastewater treatment applications. This study optimizes operating parameters in membrane rotating biological contactors (MRBC) for maximized membrane fouling through Response Surface Methodology (RSM) and an Artificial Neural Network (ANN). MRBC is an integrated system, embracing membrane filtration and conventional rotating biological contactor in one individual bioreactor. The filtration performance was optimized by exploiting the three parameters of disk rotational speed, membrane-to-disk gap, and organic loading rate. The results showed that both the RSM and ANN models were in good agreement with the experimental data and the modelled equation. The overall R2 value was 0.9982 for the proposed network using ANN, higher than the RSM value (0.9762). The RSM model demonstrated the optimum operating parameter values of a 44 rpm disk rotational speed, a 1.07 membrane-to-disk gap, and a 10.2 g COD/m2 d organic loading rate. The optimization of process parameters can eliminate unnecessary steps and automate steps in the process to save time, reduce errors and avoid duplicate work. This work demonstrates the effective use of statistical modeling to enhance MRBC system performance to obtain a sustainable and energy-efficient treatment process to prevent human health and the environment. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.

Item Type: Article
Additional Information: cited By 15
Uncontrolled Keywords: Biological water treatment; Bioreactors; Energy efficiency; Membrane fouling; Microfiltration; Neural networks; Rotating disks; Surface properties; Wastewater treatment, Artificial neural network; Artificial neural network modeling; Attached growth; Attached growth process; Disk rotational speed; Growth process; Operating parameters; Response surface methodology; Response-surface methodology; Rotating biological contactor, Membranes
Depositing User: Mr Ahmad Suhairi UTP
Date Deposited: 19 Dec 2023 03:23
Last Modified: 19 Dec 2023 03:23
URI: https://khub.utp.edu.my/scholars/id/eprint/17015

Actions (login required)

View Item
View Item