Optimizing deep neuro-fuzzy classifier with a novel evolutionary arithmetic optimization algorithm

Talpur, N. and Abdulkadir, S.J. and Alhussian, H. and Hasan, M.H. and Abdullah, M.H.A. (2022) Optimizing deep neuro-fuzzy classifier with a novel evolutionary arithmetic optimization algorithm. Journal of Computational Science, 64. ISSN 18777503

Full text not available from this repository.
Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

Deep Neuro-Fuzzy System has been successfully employed in various applications. But, the model faces two issues: (i) dataset with many features exponentially increases the fuzzy rule-base, (ii) parameters in the fuzzy rule-base are optimized using the gradient descent approach, which has the drawback of local minima. Therefore, this study aims on improving the model's accuracy by proposing Arithmetic Optimization Algorithm. The outcomes using the Arithmetic Optimization Algorithm for feature selection have not only reduced the burden of implementing a huge dataset, but the Arithmetic Optimization-based deep neuro-fuzzy system has outperformed with 95.14 accuracy compared to the standard method with 94.52. © 2022 Elsevier B.V.

Item Type: Article
Additional Information: cited By 6
Uncontrolled Keywords: Evolutionary algorithms; Fuzzy inference; Fuzzy neural networks; Fuzzy rules; Gradient methods; Optimization, Arithmetic optimization algorithm; Classification problem; Deep neuro-fuzzy system; Fuzzy rule base; Gradient-descent; Local minimums; Metaheuristic; Neuro fuzzy classifier; Neurofuzzy system; Optimization algorithms, Deep neural networks
Depositing User: Mr Ahmad Suhairi UTP
Date Deposited: 19 Dec 2023 03:22
Last Modified: 19 Dec 2023 03:22
URI: https://khub.utp.edu.my/scholars/id/eprint/16322

Actions (login required)

View Item
View Item