Birniwa, A.H. and Kehili, S. and Ali, M. and Musa, H. and Ali, U. and Kutty, S.R.M. and Jagaba, A.H. and Abdullahi, S.S. and Tag-Eldin, E.M. and Mahmud, H.N.M.E. (2022) Polymer-Based Nano-Adsorbent for the Removal of Lead Ions: Kinetics Studies and Optimization by Response Surface Methodology. Separations, 9 (11). ISSN 22978739
Full text not available from this repository.Abstract
This work successfully created a polypyrrole-polyethyleneimine (PPy-PEI) nano adsorbent for the elimination of the lead ion Pb2+ from an aqueous solution. An efficient conducting polymer-based adsorbent called as was created using ammonium persulfate (NH4)2S2O8 as an oxidant (PPy-PEI). The PEI hyper-branched polymer with terminal amino groups was added to the PPy adsorbent to offer heavy metals more effective chelating sites. Pb2+ removal from aqueous solution using polyethyleneimine micro adsorbent was successfully accomplished using a batch equilibrium technique (PPy-PEI). The generated water-insoluble polymer nanoadsorbent had enough nitrogen atoms; therefore, an effort was made to link PEI, a water-soluble PPy, with PPy, a conjugated polymer, for lead ion adsorption from an aqueous solution. The generated PPy-PEI nanoadsorbents were discovered to have average particle sizes of 18�34 nm and a Brunauer-Emmet-Teller surface area of 17 m2/g, respectively. The thermal behavior of the composites was investigated using thermo gravimetric and differential scanning calorimetric methods. The lead ion adsorption efficacy of pure polypyrrole was found to be 38; however, a batch equilibrium technique employing nanoadsorbent revealed with the maximum adsorption capacity of 75.60 mg g�1. At pH 10 and 30 min of contact time at 50 °C, 0.2 g of adsorption was shown to be the ideal dosage. X-ray diffraction analysis, energy-dispersive ray spectroscopy, and Fourier transform infrared ray spectrum support the lead ion adsorption by PPy-PEI nanoadsorbents. The cauli-like structure was visible using field emission scanning electron microscopy. Studying the thermodynamic showed that the adsorption was endothermic as illustrated from the positive value of value of �H° is 1.439 kJ/mol which indicates that the uptake of Pb2+ onto nanoadsorbent PPy-PEI could be attributed to a physical adsorption process. According to the values of �G°, the adsorption process was spontaneous at all selected temperatures. The positive value of �S° value (43.52 j/mol) suggested an increase in the randomness at the solid/solution interface during the adsorption process. The adsorption data meet the pseudo-second-order kinetic model and suited the Langumuir isothermal model effectively. © 2022 by the authors.
Item Type: | Article |
---|---|
Additional Information: | cited By 19 |
Depositing User: | Mr Ahmad Suhairi UTP |
Date Deposited: | 19 Dec 2023 03:22 |
Last Modified: | 19 Dec 2023 03:22 |
URI: | https://khub.utp.edu.my/scholars/id/eprint/16203 |