Experimental investigation and modelling of synergistic thermodynamic inhibition of Diethylene Glycol and glycine mixture on CO2 gas hydrates

Rehman, A.U. and Abdulwahab, A. and Kaur, A. and Khan, M.S. and Zaini, D.B. and Shariff, A.M. and Lal, B. (2022) Experimental investigation and modelling of synergistic thermodynamic inhibition of Diethylene Glycol and glycine mixture on CO2 gas hydrates. Chemosphere, 308. ISSN 00456535

Full text not available from this repository.
Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

In this experimental and modelling study, Diethylene glycol (DEG) and Glycine (Gly) mixtures are introduced to hinder carbon dioxide hydrate formation by pushing the phase boundaries on the lower temperature side. The mixture of DEG and Gly with the ratio of 1:1 is experimented at 15, 10, and 5 wt concentrations and the pressure vary from 2.5 to 4.0 MPa. The T-cycle method is employed to assess the effect of the studied blends on the CO2 hydrate by evaluating the hydrate dissociation temperature. Varied compositions of pure DEG and Gly as well as their mixtures are used to compute the synergistic effect. The studied system's thermodynamic hydrate inhibition (THI) influence is a concentration-driven phenomenon. Higher concentration can shift the hydrate liquid vapor equilibrium (HLVE) curve to lower temperatures and high-pressure regions. The outcomes depict that mixture of DEG and Gly at 15 wt. Shows comparatively better results than the mixtures at 5 and 10 wt, respectively. The obtained 10 wt mixture results have also been compared with the conventional hydrate inhibitors and other THIs systems and provide a significant hydrate average suppression (�T) of 2.4 K. Furthermore, the freezing point-based Dickens and Quint Hunt model was also applied to predict the HLVE data of CO2 hydrates and satisfactory agreement found with maximum mean absolute error (MAE) of 0.498 K. A better inhibitory performance was seen when diethylene glycol and glycine were combined, demonstrating the potential of amino acids as synergistic inhibitors in the exploitation of hydrates, transportation of oil and gas, and flow assurance. © 2022 Elsevier Ltd

Item Type: Article
Additional Information: cited By 5
Uncontrolled Keywords: amino acid; carbon dioxide; diethylene glycol; ethylene glycol derivative; glycine; water, chemistry; gas; thermodynamics, Amino Acids; Carbon Dioxide; Ethylene Glycols; Gases; Glycine; Thermodynamics; Water
Depositing User: Mr Ahmad Suhairi UTP
Date Deposited: 19 Dec 2023 03:22
Last Modified: 19 Dec 2023 03:22
URI: https://khub.utp.edu.my/scholars/id/eprint/16143

Actions (login required)

View Item
View Item