Witoon, T. and Numpilai, T. and Dolsiririttigul, N. and Chanlek, N. and Poo-arporn, Y. and Cheng, C.K. and Ayodele, B.V. and Chareonpanich, M. and Limtrakul, J. (2022) Enhanced activity and stability of SO42�/ZrO2 by addition of Cu combined with CuZnOZrO2 for direct synthesis of dimethyl ether from CO2 hydrogenation. International Journal of Hydrogen Energy, 47 (98). pp. 41374-41385. ISSN 03603199
Full text not available from this repository.Abstract
Cu-modified SO42�/ZrO2 catalysts (XCu-SZ) with different Cu loading contents were prepared by sulfation of ZrOCl2·8H2O with (NH4)2SO4 to form SO42�/ZrO2 (SZ) followed by impregnation of SZ with a Cu precursor. The resulting XCu-SZ catalysts combined with a CuO�ZnO�ZrO2 catalyst were tested for CO2 hydrogenation to dimethyl ether (DME). The results indicated that the unmodified SZ catalyst exhibited the maximum DME yield (3.7) which was 2.0�2.6 times higher than the DME yield of all XCu-SZ catalysts at the beginning of reaction. However, the DME yield over the unmodified SZ catalyst rapidly decreased, while that of all XCu-SZ catalysts gradually increased during the time-on-stream experiment. After 100 h, the 6 wt Cu-modified SZ catalyst achieved the maximum DME yield of 3.2 at 260 °C and 20 bar, while the DME yield of the unmodified SZ catalyst was only 2.5. The NH3-TPD and XPS analyses indicated that more strong acid sites were present on the unmodified SZ catalyst, resulting in a coke formation and thus the rapid deactivation. For the XCu-SZ catalysts, Cu0 was formed on the surface of SZ after the reduction with H2 which accounted for the active site of hydrogenolysis of methanol to methane. During the time-on-stream experiment, Cu0 was progressively transformed to Cu2S through poisoning, leading to the continued increase of DME yield. © 2022 Hydrogen Energy Publications LLC
Item Type: | Article |
---|---|
Additional Information: | cited By 8 |
Uncontrolled Keywords: | Ammonia; Carbon dioxide; Catalyst activity; Copper oxides; Greenhouse gases; Hydrogenation; II-VI semiconductors; Zinc oxide; Zirconia, CO2 hydrogenation; CO2 utilization; Cu-modified sulphated zirconium; Dimethyl ether; Direct synthesis; Greenhouses gas; Sulfated Zirconia; Synthesis of dimethyl ethers; Time on streams; ]+ catalyst, Ethers |
Depositing User: | Mr Ahmad Suhairi UTP |
Date Deposited: | 19 Dec 2023 03:22 |
Last Modified: | 19 Dec 2023 03:22 |
URI: | https://khub.utp.edu.my/scholars/id/eprint/16062 |