A New Hybrid Improved and Enhanced Oil Recovery IOR/EOR Process Using Smart Water Assisted Foam SWAF Flooding in Carbonate Rocks; A Laboratory Study Approach

Hassan, A.M. and Ayoub, M. and Eissa, M. and Bruining, H. and Al-Mansour, A. and Al-Quraishi, A. and Abdulaziz, K. (2021) A New Hybrid Improved and Enhanced Oil Recovery IOR/EOR Process Using Smart Water Assisted Foam SWAF Flooding in Carbonate Rocks; A Laboratory Study Approach. In: UNSPECIFIED.

Full text not available from this repository.
Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

Given the increasing demand for energy globally and depleting oil and gas resources, it is crucial to increase the production from existing reservoirs by introducing new technologies for Improved/Enhanced Oil Recovery (IOR/EOR). This contribution presents a novel hybrid IOR/EOR method, which combines smart water (SW) and foam flooding, known as Smart Water Assisted Foam (SWAF) flooding. The optimal conditions of the SWAF technology will be interpreted using experimental laboratory design (i.e., experimental data). The experimental design was divided into three main steps. The first step is obtaining rock wettability measurements using contact angle measurements. This step aims to select the optimum SW composition that changes the carbonate rock's wettability from oil-wet towards more water-wet and faster oil recoveries. The water-wet condition leads to high residual oil saturations and low end-point permeabilities. This is conductive to favourable mobility ratios and efficient water-oil displacement. However, high residual oil saturations are unfavourable to the high ultimate oil recovery as much oil stays behind. Secondly, the chemical screening follows, where two tests were performed, viz., (i) an Aqueous Stability Test (AST), (ii) and a Foamability and Foam Stability Tests (FT/FST). This step aims to generate a stable foam (i.e., surfactant aqueous solution + gas) in the absence and presence of crude oil with different TAN (Total Acid Number) and TBN (Total Base Number), viz., crude oils Type-A and Type-B. Favourable mobility ratio is achieved by the presence of foam, which leads to excellent displacement efficiency. Thirdly, core flooding tests are performed. This step aims to select the best formulations through SWAF core flooding tests to obtain the ultimate recovery factor under different injection scenarios. The optimal SWAF condition combines high ultimate recovery with the best displacement efficiency. It is shown that the enormous changes in wettability were seen for SW (MgCl2) solution at 3500 (ppm) for both crude oils Type-A and Type-B. It has been shown that the use of a cationic surfactant CTAB (i.e., cetyltrimethylammonium-bromide) in the positively charged carbonates (with an isoelectric point of pH = 9) is more effective than the use of anionic surfactant, e.g., Alpha Olefin Sulfonate (AOS). The aim is to create an optimum surfactant aqueous solution (SAS). The SAS stability is considerably affected by the concentration of both the SW (MgCl2) and surfactant (CTAB). In the absence of oil, the strength of foam (SAS and Gas) is highly dependent on the concentration and composition of the SW in the SAS. In the presence of oil, foam generation and stability are better when the crude oil has a low TAN and high TBN. From the core flooding tests for crude oils Type-A and Type-B, the ultimate residual oil recovery was achieved by the MgCl2 - foam injection combination (i.e., incremental oil recovery of 42, which is equivalent to a cumulative oil recovery of 92). In summary, SWAF under the optimum conditions is a promising method to increase the oil recovery from carbonate reservoirs. Copyright © 2021, International Petroleum Technology Conference.

Item Type: Conference or Workshop Item (UNSPECIFIED)
Additional Information: cited By 13; Conference of 2021 International Petroleum Technology Conference, IPTC 2021 ; Conference Date: 23 March 2021 Through 1 April 2021; Conference Code:187135
Uncontrolled Keywords: Carbonates; Carbonation; Chemical stability; Chlorine compounds; Contact angle; Crude oil; Enhanced recovery; Floods; Gasoline; Magnesium compounds; Oil well flooding; Petroleum reservoirs; Recovery; Secondary recovery; Wetting, Carbonate rock; Core flooding experiment; Core-flooding; Enhanced-oil recoveries; Foam flooding; Foam stability; Foamability; Foamability test; Improved/enhanced oil recovery (IOR/EOR); Low salinity water; Low-salinity water; Smart water; Smart water assisted foam flooding; Surfactant screening; Water assisted; Wettability measurements, Surface active agents
Depositing User: Mr Ahmad Suhairi UTP
Date Deposited: 10 Nov 2023 03:29
Last Modified: 10 Nov 2023 03:29
URI: https://khub.utp.edu.my/scholars/id/eprint/15338

Actions (login required)

View Item
View Item