Porous polyether sulfone for direct methanol fuel cell applications: Structural analysis

Junoh, H. and Jaafar, J. and M. Nordin, N.A.H. and Ismail, A.F. and Othman, M.H.D. and Rahman, M.A. and Aziz, F. and Yusof, N. and Sayed Daud, S.N.S. (2021) Porous polyether sulfone for direct methanol fuel cell applications: Structural analysis. International Journal of Energy Research, 45 (2). pp. 2277-2291. ISSN 0363907X

Full text not available from this repository.
Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

Porous poly ether sulfone (PES) membranes were prepared using two different solvents which were N-methyl-2-pyrrolidone and dimethylacetamide (DMAc) via dry/wet non-solvent phase inversion (NIPS) techniques. PES with the compositions of 18 wt is prepared for each dope solution. During the membrane casting process, 0 to 5 minutes delay prior to immersion in coagulant bath is set in order to allow solvent evaporation to take place. Water is used as the non-solvent for solvent exchange process. The prepared membranes are characterised based on their morphological aspect using scanning electron microscopy towards the effect of solvent evaporation time and solution viscosity. The changes in proton conductivity, methanol permeability, water uptake and hydrophilicity/hydrophobicity behaviours are also studied. Conclusively, the 18 wt PES membranes prepared with DMAc as solvent at 3 minutes solvent evaporation time exhibited desirable pore size for proton conduction (0.04 � 10�3 Scm�1) and methanol resistant effect that consequently contribute to considerably low methanol permeability rate at 0.06 � 10�7 cm2 s�1 which could elevate the direct methanol fuel cell performance. © 2020 John Wiley & Sons Ltd

Item Type: Article
Additional Information: cited By 1
Uncontrolled Keywords: Ethers; Evaporation; Methanol; Methanol fuels; Organic solvents; Pore size; Scanning electron microscopy, Different solvents; Direct methanol fuel cell performance; Effect of solvents; Low methanol permeability; Methanol permeability; Morphological aspects; N-methyl-2-pyrrolidone; Solvent evaporation, Direct methanol fuel cells (DMFC)
Depositing User: Mr Ahmad Suhairi UTP
Date Deposited: 10 Nov 2023 03:29
Last Modified: 10 Nov 2023 03:29
URI: https://khub.utp.edu.my/scholars/id/eprint/15258

Actions (login required)

View Item
View Item