Ahmad, A. and Mahmood, H. and Mansor, N. and Iqbal, T. and Moniruzzaman, M. (2021) Ionic liquid assisted polyetheretherketone-multiwalled carbon nanotubes nanocomposites: An environmentally friendly approach. Journal of Applied Polymer Science, 138 (14). ISSN 00218995
Full text not available from this repository.Abstract
Reinforcement of PEEK by nanoparticles such as multiwalled carbon nanotubes (MWCNTs), is a promising technique to prepare PEEK nanocomposites with improved properties for promising biomedical applications. However, proper dispersion of MWCNTs in the polymer matrices is a primary processing challenge. The present study reports a novel and environmentally beneficial approach for homogeneous dispersion of MWCNT in PEEK by using ionic liquid (IL) 1-ethyl-3-methylimidazolium hydrogen sulfate (EMIMHSO4). Neat PEEK, PEEK-MWCNTs (using conventional organic solvent dimethylformamide), and PEEK-MWCNTs-IL (using EMIMHSO4) nanocomposites were fabricated via melt-compounding and compression molding techniques. The fabricated composites were characterized for morphological, thermal, and mechanical properties and compared to those of neat PEEK and PEEK-MWCNTs. Ionic liquid provoked proficient dispersion of the MWCNTs in PEEK, as confirmed by FESEM and optical micrographs. The thermal stability of PEEK-MWCNTs-IL composite was significantly superior to that of the neat PEEK and PEEK-MWCNTs. Analysis of tensile strength and nanoindentation depicted that the modulus of elasticity of PEEK-MWNCTs-IL was significantly increased by 76% as compared to that of neat PEEK. We believe that the present work could provide a new and green platform for the manufacturing of PEEK nanocomposites with enhanced dispersion of nanofillers for biomedical applications. © 2020 Wiley Periodicals LLC.
Item Type: | Article |
---|---|
Additional Information: | cited By 11 |
Uncontrolled Keywords: | Compression molding; Dimethylformamide; Dispersions; Green manufacturing; Ionic liquids; Medical applications; Nanocomposites; Nanotubes; Sulfur compounds; Tensile strength; Thermodynamic stability, Biomedical applications; Compression-molding technique; Homogeneous dispersions; Hydrogen sulfate; Multiwalled carbon nanotube (MWCNTs); Optical micrographs; Polymer matrices; Primary processing, Multiwalled carbon nanotubes (MWCN) |
Depositing User: | Mr Ahmad Suhairi UTP |
Date Deposited: | 10 Nov 2023 03:29 |
Last Modified: | 10 Nov 2023 03:29 |
URI: | https://khub.utp.edu.my/scholars/id/eprint/15021 |