Macro and micro routes to high performance bioplastics: Bioplastic biodegradability and mechanical and barrier properties

Attallah, O.A. and Mojicevic, M. and Garcia, E.L. and Azeem, M. and Chen, Y. and Asmawi, S. and Fournet, M.B. (2021) Macro and micro routes to high performance bioplastics: Bioplastic biodegradability and mechanical and barrier properties. Polymers, 13 (13). ISSN 20734360

Full text not available from this repository.
Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

On a score sheet for plastics, bioplastics have a medium score for combined mechanical performance and a high score for biodegradability with respect to counterpart petroleum-based plastics. Analysis quickly confirms that endeavours to increase the mechanical performance score for bioplastics would be far more achievable than delivering adequate biodegradability for the recalci-trant plastics, while preserving their impressive mechanical performances. Key architectural features of both bioplastics and petroleum-based plastics, namely, molecular weight (Mw) and crystallinity, which underpin mechanical performance, typically have an inversely dependent relationship with biodegradability. In the case of bioplastics, both macro and micro strategies with dual positive correlation on mechanical and biodegradability performance, are available to address this dilemma. Regarding the macro approach, processing using selected fillers, plasticisers and compatibilisers have been shown to enhance both targeted mechanical properties and biodegradability within bio-plastics. Whereas, regarding the micro approach, a whole host of bio and chemical synthetic routes are uniquely available, to produce improved bioplastics. In this review, the main characteristics of bioplastics in terms of mechanical and barrier performances, as well as biodegradability, have been assessed�identifying both macro and micro routes promoting favourable bioplastics� production, processability and performance. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

Item Type: Article
Additional Information: cited By 13
Uncontrolled Keywords: Biodegradability; Crystallinity; Elastomers; Gasoline; Plastic products; Plastics fillers; Reinforced plastics; Solvents, Architectural features; Compatibilisers; Dependent relationship; Mechanical and barriers; Mechanical performance; Positive correlations; Processability; Synthetic routes, Biodegradable polymers
Depositing User: Mr Ahmad Suhairi UTP
Date Deposited: 10 Nov 2023 03:29
Last Modified: 10 Nov 2023 03:29
URI: https://khub.utp.edu.my/scholars/id/eprint/14786

Actions (login required)

View Item
View Item