An optimized deep convolutional neural network architecture for concept drifted image classification

Jameel, S.M. and Hashmani, M.A. and Alhussain, H. and Rehman, M. and Budiman, A. (2020) An optimized deep convolutional neural network architecture for concept drifted image classification. Advances in Intelligent Systems and Computing, 1037. pp. 932-942. ISSN 21945357

Full text not available from this repository.
Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

Machine Learning (ML) is a branch of Artificial Intelligence, which is continuously evolving to overcome current technological challenges faced by industries. These technological changes are due to modernization in industries for Business Intelligence (BI) i.e., 4th Industrial Revolution. Among the other ML approaches, Image Classification plays a significant role for Business Intelligence and upfront several new challenges in online and non-stationary environment, such as Concept Drift. To overcome the CD issue, one of the fundamental requirements is optimization of classifier. Whereas, Convolutional Neural Network (CNN) is considered best classifier/model for Image Classification. Therefore, the aim of this study is to investigate the optimize architecture for CNN in Concept Drifted environment. This study examines the variety of CNN architectures (CNN1 to CNN4) through different configuration of CNN layers and tuning parameters under certain Concept Drift scenarios. Furthermore, a comparative analysis is performed among these CNN models by monitoring their classification accuracy, loss and computational complexity to validate the optimized CNN model experimentally. In future, proposed Optimize Deep Neural Network architecture will be further investigated for high dimensional Imagery data-streams, for example color and multispectral imagery. © Springer Nature Switzerland AG 2020.

Item Type: Article
Additional Information: cited By 6; Conference of Intelligent Systems Conference, IntelliSys 2019 ; Conference Date: 5 September 2019 Through 6 September 2019; Conference Code:231009
Uncontrolled Keywords: Convolution; Deep neural networks; Image classification; Information analysis; Intelligent systems; Neural networks, Classification accuracy; Comparative analysis; Concept drifts; Convolutional neural network; Industrial revolutions; Multi-spectral imagery; Non-stationary environment; Technological challenges, Network architecture
Depositing User: Mr Ahmad Suhairi UTP
Date Deposited: 10 Nov 2023 03:28
Last Modified: 10 Nov 2023 03:28
URI: https://khub.utp.edu.my/scholars/id/eprint/14078

Actions (login required)

View Item
View Item