Al-Yacouby, A.M. and Liew, M.S. (2020) Parametric Study of Hydrodynamic Coefficients for Circular Cylinders at Subcritical Reynolds Number. Lecture Notes in Mechanical Engineering. pp. 217-224. ISSN 21954356
Full text not available from this repository.Abstract
Vortex induced vibrations of circular structures are well known phenomena in many fields of engineering applications. Up to now, most of the experimental investigations are conducted at low Reynolds Numbers. In this study, the hydrodynamic forces and flow around smooth circular cylinders at subcritical Reynolds (Re) Number was investigated experimentally in the wave basin. The objective of this study is to conduct a parametric study and determine the important parameters affecting drag coefficient (CD) and lift coefficient (CL). The model tests were conducted in the offshore engineering laboratory at Universiti Teknologi PETRONAS (UTP), Malaysia, using rigid vertical cylinders with various outer diameter Do = 27, 34, 42 and 48 mm. The range of Re Number achieved in the wave basin varied from 3.19E+03 to 2.83E+04 which covers the subcritical flow regime. Generally, the values of CD determined experimentally varied between 1.12 and 1.23, while the values of CL varied between 0.23 and 0.36. The range of these force coefficients are comparable with the recommended values of drag and lift coefficients available in the literature for the similar flow regime. © 2020, Springer Nature Singapore Pte Ltd.
Item Type: | Article |
---|---|
Additional Information: | cited By 0; Conference of 4th International Conference on Mechanical, Manufacturing and Plant Engineering, ICMMPE 2018 ; Conference Date: 14 November 2018 Through 15 November 2018; Conference Code:232589 |
Uncontrolled Keywords: | Circular cylinders; Drag coefficient; Hydrodynamics; Laboratories; Lift; Offshore oil well production, Circular structures; Engineering applications; Experimental investigations; Flow regimes; Hydrodynamics coefficients; Lift coefficient; Parametric study; Subcritical Reynolds numbers; Vortex induced vibration; Wave basins, Reynolds number |
Depositing User: | Mr Ahmad Suhairi UTP |
Date Deposited: | 10 Nov 2023 03:28 |
Last Modified: | 10 Nov 2023 03:28 |
URI: | https://khub.utp.edu.my/scholars/id/eprint/14035 |