Hydrodynamic analysis of floating offshore solar farms subjected to regular waves

Al-Yacouby, A.M. and Halim, E.R.B.A. and Liew, M.S. (2020) Hydrodynamic analysis of floating offshore solar farms subjected to regular waves. Lecture Notes in Mechanical Engineering. pp. 375-390. ISSN 21954356

Full text not available from this repository.
Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

In the Malaysian water, most of offshore platforms rely on fossil fuels to produce electricity for their power generation. However, due to concerns related to depletion of fossil fuels and the greenhouse gas (GHG) emissions, the Malaysian government is moving towards the application of renewable energy resources. Floating solar farms are comparatively new in the Malaysian water, and in-depth investigation is needed to better understand the performance of these types of floaters when placed in the open sea. This paper is intended to conduct a parametric study on the dynamic responses of a floating solar farm for Malaysian offshore applications. In this study, the dynamic responses of the floating solar farm are determined using analytical methods, and then the results are validated using Computational Fluid Dynamics (CFD). The important parameters covered in this study are the wave heights, wave periods, water depths, and the diameter of pontoons. The results show that wave heights, wave periods, and pontoon diameters have major influence on the hydrodynamic forces, while the water depth has comparatively minor influence on the dynamic responses of the floating offshore solar farm. © Springer Nature Singapore Pte Ltd 2020.

Item Type: Article
Additional Information: cited By 9; Conference of 5th International Conference on Mechanical, Manufacturing and Plant Engineering, ICMMPE 2019 ; Conference Date: 19 November 2019 Through 21 November 2019; Conference Code:244879
Depositing User: Mr Ahmad Suhairi UTP
Date Deposited: 10 Nov 2023 03:28
Last Modified: 10 Nov 2023 03:28
URI: https://khub.utp.edu.my/scholars/id/eprint/13755

Actions (login required)

View Item
View Item