Enhanced solar light-driven photocatalytic degradation of pollutants and hydrogen evolution over exfoliated hexagonal WS2 platelets

Koyyada, G. and Prabhakar Vattikuti, S.V. and Shome, S. and Shim, J. and Chitturi, V. and Jung, J.H. (2019) Enhanced solar light-driven photocatalytic degradation of pollutants and hydrogen evolution over exfoliated hexagonal WS2 platelets. Materials Research Bulletin, 109. pp. 246-254. ISSN 00255408

Full text not available from this repository.
Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

Two-dimensional (2D) layered structure transition metal dichalcogenides (TMDs) has been attracted huge attention and importance for photocatalytic energy conversion due to their unique properties. In this paper, exfoliated hexagonal WS2 (e-h-WS2) platelets were successfully synthesized by liquid-phase exfoliation (LPE) process from hexagonal WS2 (h-WS2) platelets in DMF solvent. The photocatalytic activity of e-h-WS2 and h-WS2 catalysts were compared systematically for degradation of various organic dye such as Congo red (CR), Methyl orange (MO), Phenol red (PR) and Rhodamine B (RhB)) pollutants and hydrogen production under simulated solar light irradiation. UV-vis and N2 absorption-desorption studies revealed that e-h-WS2 have shown narrow band gap and higher specific surface area than that of h-WS2. Enhanced photocatalytic activity was obtained for e-h-WS2 than h-WS2 i.e. 1.71 fold enhancement for hydrogen production rate. More importantly, this synthetic exfoliated procedure may open up an opportunity to synthesize other transition metal sulfides. © 2018 Elsevier Ltd

Item Type: Article
Additional Information: cited By 35
Uncontrolled Keywords: Azo dyes; Biodegradation; Dyes; Energy conversion; Energy gap; Hydrogen production; Photocatalysis; Photocatalysts; Photodegradation; Platelets; Pollution; Solar power generation; Sulfur compounds; Transition metals, Absorption-desorption; Exfoliation; Hydrogen production rate; Photo catalytic degradation; Photocatalytic activities; Pollutants; Simulated solar light; Transition metal sulfides, Tungsten compounds
Depositing User: Mr Ahmad Suhairi UTP
Date Deposited: 10 Nov 2023 03:26
Last Modified: 10 Nov 2023 03:26
URI: https://khub.utp.edu.my/scholars/id/eprint/12289

Actions (login required)

View Item
View Item