Performance-based fault diagnosis of a gas turbine engine using an integrated support vector machine and artificial neural network method Academic Article uri icon

abstract

  • An effective and reliable gas path diagnostic method that could be used to detect, isolate, and identify gas turbine degradations is crucial in a gas turbine condition-based maintenance. In this paper, we proposed a new combined technique of artificial neural network and support vector machine for a two-shaft industrial gas turbine engine gas path diagnostics. To this end, an autoassociative neural network is used as a preprocessor to minimize noise and generate necessary features, a nested support vector machine to classify gas path faults, and a multilayer perceptron to assess the magnitude of the faults. The necessary data to train and test the method are obtained from a performance model of the case engine under steady-state operating conditions. The test results indicate that the proposed method can diagnose both single- and multiple-component faults successfully and shows a clear advantage over some other methods in terms of multiple fault diagnosis. Moreover, 5-8 sets of measurements have been used to assess the prediction accuracy, and only a 2.3% difference was observed. This result indicates that the proposed method can be used for multiple fault diagnosis of gas turbines with limited measurements.

publication date

  • 2019

number of pages

  • 16

start page

  • 786

end page

  • 802

volume

  • 233

issue

  • 6