Durability Behaviours of Engineered Cementitious Composites Blended with Carbon Nanotubes against Sulphate and Acid Attacks by Applying RSM Modelling and Optimization Academic Article uri icon

abstract

  • Chemical deterioration, including sulphate and acid attacks, is a major issue affecting the long-term durability of engineered cementitious composite (ECC) constructions that contact water from various sources, including groundwater, seawater, sewer water, and drinking water. This research enhances ECCs’ strength and resilience against chemical attack by combining cementitious composites with multiwalled carbon nanotubes (CNTs) and polyvinyl alcohol (PVA) fibre volume fractions using multiobjective optimization. The central composite design (CCD) of RSM was applied to generate thirteen mixes of different potential combinations of factors (multiwalled CNTs: 0.05% to 0.08%, PVA: 1–2%) and eight outcome responses were studied, although eight response models—six quadratic and two linear—were successfully designed and assessed using analysis of variance. The coefficients associated with R2 for all the models were exceptionally high, with values varying from 84 to 99 percent. The multiobjective optimization predicted the best outcomes and developed optimal values for both variables (CNTs: 0.05% and PVA: 1%). The results showed that, at 0.05% of CNTs in ECCs, an ultimate improvement of 23% in compressive strength was seen. Additionally, when CNTs are used to grow in the ECC matrix, the expansion owing to sulphate resistance and length change due to acid attack are both reduced. In addition, when the percentage of CNTs increases in ECCs, the weight loss and pH value owing to acid attack, as well as the rate of chloride permeability test results, are reduced. Furthermore, CNTs and PVA fibres with 0.05% and 1–1.5% concentrations offer optimal construction sector outcomes.

publication date

  • 2023

start page

  • 2032

volume

  • 13

issue

  • 8