Foam-like 3D Graphene as a Charge Transport Modifier in Zinc Oxide Electron Transport Material in Perovskite Solar Cells Academic Article uri icon

abstract

  • The effect of foam-like 3D graphene (3DG) in an electron transport material (ETM), viz. ZnO thin film, on the steady-state photoluminescence (PL), light-harvesting efficiency (LHE), photocurrent density (JSC), photovoltage (VOC), and charge transport parameters of perovskite solar cells (PSCs) are systematically investigated. The ETM is developed by spin coating a ZnO precursor solution containing varying amounts of 3DG on conducting glass substrates and appropriate annealing. A significant improvement in the photoconversion efficiency of PSCs is observed for a low concentration of 3DG in ZnO. The current–voltage and electrochemical impedance spectroscopy measurements show that the addition of 3DG enhances the VOC due to efficient electron–hole separation and charge transport compared to the pristine ZnO. These studies offer a route for further advances in enhancing the optoelectronic properties of ETM for artificial photosynthesis and photocatalysis devices.

publication date

  • 2021

number of pages

  • 13

start page

  • 523

end page

  • 536

volume

  • 1

issue

  • 3